Deep Stacked Ensemble Learning Model for COVID-19 Classification

نویسندگان

چکیده

COVID-19 is a growing problem worldwide with high mortality rate. As result, the World Health Organization (WHO) declared it pandemic. In order to limit spread of disease, fast and accurate diagnosis required. A reverse transcript polymerase chain reaction (RT-PCR) test often used detect disease. However, since this time-consuming, chest computed tomography (CT) or plain X-ray (CXR) sometimes indicated. The value automated that saves time money by minimizing human effort. Three significant contributions are made our research. Its initial purpose use essential finetuning methodology action efficiency variety vision models, ranging from Inception Neural Architecture Search (NAS) networks. Second, plotting class activation maps (CAMs) for individual networks assessing classification AUC-ROC curves, behavior these models visually analyzed. Finally, stacked ensembles techniques were provide greater generalization combining finetuned six ensemble neural Using ensembles, improved. Furthermore, model created all obtained state-of-the-art accuracy detection score 99.17%. precision recall rates 99.99% 89.79%, respectively, highlighting robustness ensembles. proposed approach performed well in lesions on CXR according experimental results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Ensemble Classification Model for the Diagnosis of Breast Cancer Using Stacked Generalization

Introduction: Breast cancer is one of the most common types of cancer whose incidence has increased dramatically in recent years. In order to diagnose this disease, many parameters must be taken into consideration and mistakes are possible due to human errors or environmental factors. For this reason, in recent decades, Artificial Intelligence has been used by medical practitioners to diagnose ...

متن کامل

An Ensemble Classification Model for the Diagnosis of Breast Cancer Using Stacked Generalization

Introduction: Breast cancer is one of the most common types of cancer whose incidence has increased dramatically in recent years. In order to diagnose this disease, many parameters must be taken into consideration and mistakes are possible due to human errors or environmental factors. For this reason, in recent decades, Artificial Intelligence has been used by medical practitioners to diagnose ...

متن کامل

Deep Transfer Learning Ensemble for Classification

Transfer learning algorithms typically assume that the training data and the test data come from different distribution. It is better at adapting to learn new tasks and concepts more quickly and accurately by exploiting previously gained knowledge. Deep Transfer Learning (DTL) emerged as a new paradigm in transfer learning in which a deep model offer greater flexibility in extracting high-level...

متن کامل

Classification of Chest Radiology Images in Order to Identify Patients with COVID-19 Using Deep Learning Techniques

Background and Aim: Due to the important role of radiological images for identifying patients with COVID-19, creating a model based on deep learning methods was the main objective of this study. Materials and Methods: 15,153 available chest images of normal, COVID-19, and pneumonia individuals which were in the Kaggle data repository was used as dataset of this research. Data preprocessing inc...

متن کامل

Meta-Learning for Stacked Classification

In this paper we describe new experiments with the ensemble learning method Stacking. The central question in these experiments was whether meta-learning methods can be used to accurately predict various aspects of Stacking’s behaviour. The resulting contributions of this paper are twofold: When learning to predict the accuracy of stacked classifiers, we found that the single most important fea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers, materials & continua

سال: 2022

ISSN: ['1546-2218', '1546-2226']

DOI: https://doi.org/10.32604/cmc.2022.020455